Close today: HW_2A, 2B (5.3,5.4) Closes tomorrow: HW_2C (5.5)

5.5 The Substitution Rule

The Substitution Rule:

If we write u = g(x) and du = g'(x) dx, then

$$\int f(g(x))g'(x)dx = \int f(u)du$$

Observations from last class

- 1. We are reversing the "chain rule".
- 2. In each case, we see

"inside" = a function inside another

"outside" = derivative of inside

Entry Task: Let $u = 1 + x^4$ and correctly change the variable in

$$\int x^3(1+x^4)^{11} dx$$

$$2.\int \frac{\sec^2(\sqrt{x})}{\sqrt{x}} dx$$

Aside: What is really happening (you do not need to write this)

Recall:

$$\int_{a}^{b} f(g(x))g'(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(g(x_i))g'(x_i)\Delta x$$

If we replace u = g(x), then we are "transforming" the problem from one involving x and y to one with u and y.

This changes *everything* in the set up. The lower bound, upper bound, widths, and integrand all change!

Recall from Math 124 that

$$g'(x) = \frac{du}{dx} \approx \frac{\Delta u}{\Delta x}$$

(with more accuracy when Δx is small)

Thus, we can say that $g'(x)\Delta x \approx \Delta u$ In other words, if the width of the rectangles using x and y is Δx , then the width of the rectangles using u and y is $g'(x)\Delta x$.

And if we write
$$u_i = g(x_i)$$
, then

$$\int_a^b f(g(x))g'(x)dx = \lim_{n \to \infty} \sum_{\substack{i=1 \\ n}}^n f(g(x_i))g'(x_i)\Delta x$$

$$= \lim_{n \to \infty} \sum_{\substack{i=1 \\ n \to \infty}}^n f(u_i)\Delta u$$

$$= \int_{g(a)}^{g(b)} f(u)du$$

Here is a visual example of this transformation

$$\int_0^1 x^2 (1+2x^3)^4 dx$$

Let $u = 1 + 2x^3$. Change *everything* in terms of u.

Example: Evaluate $\int_{2}^{3} x^{2} e^{x^{3}} dx$

Example: Compute

$$\int_{2}^{3} x^2 e^{x^3} dx$$

Advice on picking u = ???

Try u = *inside* Try u = *denominator* It doesn't take long to try something,

so experiment!

```
\int x \cos(\sin(x^2)) \cos(x^2) dx
```

$$\int_{0}^{1} \frac{x}{x^2 + 3} dx$$

What to do when the "old" variable remains:

Examples:

$$1.\int x^3\sqrt{2+x^2}\,dx$$

Ch 6: Basic Integral Applications

6.1 Areas Between Curves

Using dx:

Example: Find the area bounded between y = 2x and $y = x^2$. y=2x $y=x^2$

Using dy:

Example: Set up an integral for the area bounded between $x = 2y^2$ and $x = y^3$ (shown below) using dy.

Summary: The area between curves

1. Draw picture finding all intersections.

- 2. Choose dx or dy. Get *everything* in terms of the variable you choose.
- 3. Draw a typical approx. rectangle.

4. Set up as follows:
Area =
$$\int_{a}^{b} (TOP - BOTTOM) dx$$

Area = $\int_{c}^{d} (RIGHT - LEFT) dy$

Example: Set up an integral (or integrals) that give the area of the region bounded by $x = y^2$ and y = x - 2.

Set up an integral for the total positive area of the following regions:

