Close today: \quad HW_2A, 2B $(5.3,5.4) \quad$ Entry Task:
Closes tomorrow: HW_2C (5.5) Let $u=1+x^{4}$ and correctly change the variable in

$$
\int x^{3}\left(1+x^{4}\right)^{11} d x
$$

The Substitution Rule:

If we write $u=g(x)$ and $d u=g^{\prime}(x) d x$, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

Observations from last class

1. We are reversing the "chain rule".
2. In each case, we see
"inside" = a function inside another
"outside" = derivative of inside
3. $\int \frac{\sec ^{2}(\sqrt{x})}{\sqrt{x}} d x$

Aside: What is really happening (you do not need to write this)

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(g\left(x_{i}\right)\right) g^{\prime}\left(x_{i}\right) \Delta x
$$

If we replace $u=g(x)$, then we are "transforming" the problem from one involving x and y to one with u and y.

This changes everything in the set up. The lower bound, upper bound, widths, and integrand all change!

Recall from Math 124 that

$$
g^{\prime}(x)=\frac{d u}{d x} \approx \frac{\Delta u}{\Delta x}
$$

(with more accuracy when Δx is small)

Thus, we can say that

$$
g^{\prime}(x) \Delta x \approx \Delta u
$$

In other words, if the width of the rectangles using x and y is Δx, then the width of the rectangles using u and y is $g^{\prime}(x) \Delta x$.

And if we write $u_{i}=g\left(x_{i}\right)$, then

$$
\begin{aligned}
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(g\left(x_{i}\right)\right) g^{\prime}\left(x_{i}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(u_{i}\right) \Delta u \\
& =\int_{g(a)}^{g(b)} f(u) d u
\end{aligned}
$$

Here is a visual example of this transformation

$$
\int_{0}^{1} x^{2}\left(1+2 x^{3}\right)^{4} d x
$$

Let $u=1+2 x^{3}$.
Change everything in terms of u.

We get

Example: Evaluate

$\int_{2}^{3} x^{2} e^{x^{3}} d x$

Example: Compute 3
 $\int_{2} x^{2} e^{x^{3}} d x$

Advice on picking $u=? ? ?$

Try u = inside
Try u = denominator

It doesn't take long to try something, so experiment!
$\int \mathrm{x} \cos \left(\sin \left(x^{2}\right)\right) \cos \left(x^{\wedge} 2\right) d x$

$$
\int \tan (x) d x
$$

What to do when the "old"

variable remains:

Examples:

1. $\int x^{3} \sqrt{2+x^{2}} d x$
2. $\int \frac{\mathrm{x}^{7}}{x^{4}+1} d x$

Ch 6: Basic Integral Applications 6.1 Areas Between Curves Using dx :

(a) Typical rectangle

Area $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right) \Delta x$

Example: Find the area bounded between $y=2 x$ and $y=x^{2}$.

Using dy:

Area $=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(f\left(y_{i}\right)-g\left(y_{i}\right)\right) \Delta y$

Example: Set up an integral for the area bounded between $x=2 y^{2}$ and $x=y^{3}$ (shown below) using dy .

Summary: The area between curves

1. Draw picture finding all intersections.
2. Choose dx or dy. Get everything in terms of the variable you choose.
3. Draw a typical approx. rectangle.
4.Set up as follows:

Area $=\int_{a}^{b}($ TOP - BOTTOM $) d x$

$$
\text { Area }=\int_{c}^{d}(\text { RIGHT }- \text { LEFT }) d y
$$

Example: Set up an integral (or

 integrals) that give the area of the region bounded by $x=y^{2}$ and $y=x-2$.
Set up an integral for the total positive area

 of the following regions:

